已知|ab-2|与|b-1|互为相反数,试求代数式1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+…+1/(a+2009)(b+2009)的值

问题描述:

已知|ab-2|与|b-1|互为相反数,试求代数式1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+…+1/(a+2009)(b+2009)的值

|ab-2|+|b-1|=0,所以|ab-2|=0,|b-1|=0,所以ab-2=0,b-1=0,b=1,a=2,带入式子得1/(1*2)+1/(2*3)+1/(3*4)+……+1/(2010*2011)因为1/[n*(n+1)]=1/n-1/(n+1)所以原式=(1-1/2)+(1/2-1/3)+……+(1/2010-1/2011)=1-1/...