先化简再求值(x-y/1-x+y/1)÷x平方+2xy+y平方/2y,其中x=根号3+根号2,y=根号3-根号2 写的详细一些
问题描述:
先化简再求值(x-y/1-x+y/1)÷x平方+2xy+y平方/2y,其中x=根号3+根号2,y=根号3-根号2 写的详细一些
答
【1/(x-y)-1/(x+y)】÷【2y/(x²+2xy+y²)】
={【(x+y)-(x-y)】/(x+y)(x-y)}÷【2y/(x+y)²】
={【2y】/(x+y)(x-y)}÷【2y/(x+y)²】
={【2y】/(x+y)(x-y)}*【(x+y)²/2y】
=(x+y)/(x-y)
当x=根号3+根号2,y=根号3-根号2时
原式=(根号3+根号2+根号3-根号2时)/【(根号3+根号2)-(根号3-根号2)】
=2√3/2√2
=1/2√6
答
x=根号3+根号2,y=根号3-根号2
∴x+y=2√3
x-y=2√2
[1/(x-y)-1/(x+y)]÷2y/(x平方+2xy+y平方) 你的分子分母写的颠倒了
=[(x+y)-(x-y)]/(x+y)(x-y)×(x+y)²/2y
=(x+y)/(x-y)
=2√3/2√2
=√6/2