arcsinx的原函数(即什么函数的导函数为arcsinx)

问题描述:

arcsinx的原函数(即什么函数的导函数为arcsinx)

用分部积分法:
∫ arcsinxdx=xarcsinx-∫xdx(1-x^2)^(-1/2) =xarcsinx+∫(1-x^2)^(-1/2)d(1-x^2)
=xarcsinx+2(1-x^2)^(1/2)