三角函数恒等式 急
问题描述:
三角函数恒等式 急
tan^2a - cot^2a / sin^2a - cos^2a = sec^2a + csc^2a
(注 :分子在前 分母在后
答
(tg^2a-ctg^2a)/(sin^2a-cos^2a)
=(sin^2a/cos^2a-cos^2a/sin^2a)/(sin^2a-cos^2a)
=(sin^4a-cos^4a/sin^2a*cos^2a)/(sin^2a-cos^2a)
=(sin^2a+cos^2a)/(sin^2a*cos^2a)
=sec^2a + csc^2a