证明:不存在三次或三次以上的奇次多项式P(x)在R是下凸

问题描述:

证明:不存在三次或三次以上的奇次多项式P(x)在R是下凸

证明:只需要证明这个多项式的二阶导数不是恒大于等于0.
由P(x)是奇次多项式知P(x)的二阶导数还是奇次多项式(次数少2),并且次数为大于或等于1奇数.
不妨记P(x)的二阶导数为Q(x) = A(2n+1)x^(2n+1)+A(2n)x^(2n)+A(2n-1)x^(2n-1)+...+A(0)
(其中A(k)表示x^k的系数,n≥0,A(2n+1)≠0)
下面分两种情况讨论:
(1)A(2n+1)>0,此时易知 Q(x)/x^(2n+1) ----> A(2n+1) (x ---> ∞)
从而可知当 | x | 足够大的时候 Q(x)/x^(2n+1) >0
因此存在M>0使得 x 0,
此时有 Q(x) 综上所述,P(x)的二阶导数不恒大于等于0,所以P(x)不是下凸函数.