如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.

问题描述:

如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.

直线PQ与⊙O的位置关系是:相切.其理由如下:①连接OP、CP.∵BC是直径,∴CP⊥AB,在Rt△APC中,Q为斜边AC的中点;∴PQ=CQ=12AC(直角三角形斜边中线等于斜边一半),∴∠QPC=∠QCP;又OP=OC,∴∠OPC=∠OCP,又∠...