已知cos(π/6-α)=√3/3 求cos[(5π/6)+α]-sin^2(α-π/6)的值
问题描述:
已知cos(π/6-α)=√3/3 求cos[(5π/6)+α]-sin^2(α-π/6)的值
答
cos(5/6*π+a)
=-cos[π-(5/6*π+a)]
=-cos[π/6-a]
-[sin(a-π/6)]^2=[cos(a-π/6)]^2-1
cos(π/6-a)=cos(a-π/6)
所以
cos(5/6π+a)-[sin(a-π/6)]^2
= -√3/3+1/3-1
= -(2+√3)/3