举一个某个二元函数的两个混合二阶偏导数在某一点的值相等但在该点这两个混合二阶偏导数不连续的列子.

问题描述:

举一个某个二元函数的两个混合二阶偏导数在某一点的值相等但在该点这两个混合二阶偏导数不连续的列子.

F(x,y)=x^3y^3sin(1/(xy)),xy≠0.F(x,y)=0,xy=0.1.xy=0,显然有 Fx'(x,y)=Fy'(x,y)=0.2.xy≠0,Fx'(x,y)=3x^2y^3sin(1/(xy))-xy^2cos(1/(xy)),Fy'(x,y)=3x^3y^2sin(1/(xy))-x^2ycos(1/(xy)).3.xy=0,显然有 Fxy''(x,y)=...