F1是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上的动点,A(1,1)为定点,则|PA|+|F1|的最小值为
问题描述:
F1是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上的动点,A(1,1)为定点,则|PA|+|F1|的最小值为
A.9-根号2 B.6-根号2 C.3+根号2 D6+根号2
答
因为三角形两边之差小于第三边,所以(|PF2| - |PA|) 所以|PA| + |PF1| = 2a - (|PF2| - |PA|) >= 2a - |AF2|
= 2*3 - 根号2
= 6-根号2
即|PA|+|PF1|的最小值为6-√2