sinb/sina=cos(a+b),证明3sinb=sin(2a+b)
sinb/sina=cos(a+b),证明3sinb=sin(2a+b)
由这个sinb/sina=cos(a+b)得
sinb=cos(a+b)*sina 记为一式
另得:sinb=cos(a+b)*sina =(cosa*cosb-sina*sinb)*sina=cosa*sina*cosb-sina^2*sinb 记为二式(后面用到)
证明如下:右边=sin(2a+b)=sin(a+(a+b))=sina*cos(a+b)+cosa*sin(a+b)
把一式代入:
右边=sinb+cosa*(sina*cosb+cosa*sinb)=sinb+cosa*sina*cosb+cosa^2sinb
=sinb+cosa*sina*cosb+(1-sina^2)*sinb //用到平方和那个公式
=sinb+cosa*sina*cosb-sina^2*sinb+sinb
=3*sinb //最后一步用到二式!
sinb=cos(a+b)sina ----(1)
要证3sinb=sin(2a+b)=sin(a+a+b)
即证3sinb=sin(a+b)cosa+sinacos(a+b)
=sin(a+b)cosa+sinb
即2sinb=sina·cosb·cosa+sinb·cosa·cosa ----(2)
由(1)sinb=cos(a+b)sina=sina·cosa·cosb-sina·sina·sinb得
sina·cosb·cosa=sinb+sina·sina·sinb带入(2)得
2sinb=sinb(cosa)^2+sinb+sinb(sina)^2
=sinb+sinb(cosa^2+sina^2)
=2sinb
成立
sinb=sin[(a+b)-a]
=sin(a+b)cosa-cos(a+b)sina
=sin(a+b)cosa-sinb/sina*sina
=sin(a+b)cosa-sinb
2sinb=sin(a+b)cosa
因为:sinb/sina=cos(a+b),
所以,sinb=sinacos(a+b),
3sinb=sin(a+b)cosa+sinb
=sin(a+b)cosa+sinacos(a+b)
=sin(2a+b)
由sinb/sina=cos(a+b) => sinb=cos(a+b)sina => 2sinb=sin(2a+b)-sinb
=> 3sinb=sin(2a+b).
故原式成立。