已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
问题描述:
已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
答
由抛物线的定义可得:|AF|+|BF|=x1+
+x2+p 2
=x1+x2+p=8p 2
∴x1+x2=8-p.
∵点Q(6,0)在线段AB的垂直平分线上,
∴|QA|=|QB|即:(x1-6)2+y12=(x2-6)2+y22,
又∵y12=2px1,y22=2px2,
∴(x1-6)2+2px1=(x2-6)2+2px2,
整理得:(x1-x2)(x1+x2-12+2p)=0.
∵x1≠x2∴x1+x2-12+2p=0即:x1+x2=12-2p=8-p
解得:p=4,
∴抛物线的方程为y2=8x.