三角形ABC的外接圆半径是1,圆心为o,且2向量OA+向量AB+向量AC=0,丨OA丨=丨AB丨则向量CA*CB=
问题描述:
三角形ABC的外接圆半径是1,圆心为o,且2向量OA+向量AB+向量AC=0,丨OA丨=丨AB丨则向量CA*CB=
答
在BC边上取中点D,则AB向量+AC向量=2AD向量 ∵2OA向量+AB向量+AC向量=0向量 ∴2OA向量+2AD向量=0向量 ∴AD向量=AO向量,点0就是BC的中点 ∴三角形ABC为直角三角形且∠A=90° ∵三角形ABC外接圆的半径为1,圆心为O ∴0A...