若sin(a减4分之派)分之cos2a=负2分之根号2,则sina加cosa的值为?急

问题描述:

若sin(a减4分之派)分之cos2a=负2分之根号2,则sina加cosa的值为?急

cos2a/sin(a-π/4)=(cosa^2-sina^2)/(sina-cosa)=-(cosa+sina)=-√2/2
所以sina+cosa=√2/2

sin(a减4分之派)分之cos2a=(cos^2a-sin^2a)/[2分之根号2(sina-cosa)]
=[cosa+sina]/2分之根号2=负2分之根号2,cosa+sina=-1/2

即(cos²a-sin²a)/(sinacosπ/4-cosxsinπ/4)
=(cosa+sina)(cosa-sina)/[√2/2(sina-cosx)
=-(cosa+sina)/(√2/2)
=-√2/2
sina+cosa=1/2