已知m,n是方程x²-x-9=0的两个实数根,求m²+7n²+3n-66的值

问题描述:

已知m,n是方程x²-x-9=0的两个实数根,求m²+7n²+3n-66的值

∵m、n是方程x^2-x-9=0的两根,∴m^2-m=n^2-n=9、m+n=1,
∴m^2+7n^2+3n-66
=(m^2-m)+m+7(n^2-n)+7n+3n-66
=9+m+7×9+10n-66
=6+(m+n)+9n
=6+1+9n
=7+9n.
∵n^2-n=9,∴n^2-n+1/4=9+1/4=37/4,∴(n-1/2)^2=37/4,
∴[(n-1/2)+√37/2][(n-1/2)-√37/2]=0,
∴n=(1-√37)/2,或n=(1+√37)/2.
于是:
m^2+7n^2+3n-66=7+9(1-√37)/2,或m^2+7n^2+3n-66=7+9(1+√37)/2.