举例说明不要求可除条件而要求消去条件,即要求由aχ=ay可推出χ=y,由χ·a=y·a可推出χ=y,则G不见得是一个群,若G有限怎么样?
问题描述:
举例说明不要求可除条件而要求消去条件,即要求由aχ=ay可推出χ=y,由χ·a=y·a可推出χ=y,则G不见得是一个群,若G有限怎么样?
答
对于有限的G,如果已经是一个幺半群的话,那么它一定是群.任取一个x∈G,假设G不是群,那么x^n一定不等于单位元e,对任意的n都成立.于是,由于G有限,{x^n}这个看起来无限的集合也必须有限,那么必须存在y∈G,使得x^m=x^(m+n)=y(一定会有重复),于是x^m*e=x^m*x^n,则x^n=e,于是x的逆就可以定义为x^(n-1)∈G了.