设a,b使得6位数 a2000b 能被26整除.所有这样的6位数是_.
问题描述:
设a,b使得6位数 a2000b 能被26整除.所有这样的6位数是______.
答
因为26=2×13,
所以6位数
能被26整除时,能同时被2和13整除.. a2000b
能被2整除的数是偶数,所以b是偶数,即b=0,2,4,6,8;
又因为能被13整除的数,末三位数字所表示的数与末三位以前的数字所表示的数的差(大数减小数) 能被13整除,
即(
-b)能被13整除.. a20
当b=0时,a=5;
当b=2时,a无整数解;
当b=4时,a=4;
当b=6时,a无整数解;
当b=8时,a=3.
故这样的6位数是:520000,420004,320008.
故答案为:520000,420004,320008.