已知tanθ=1/2,求sin2θ+cos2θ的值
问题描述:
已知tanθ=1/2,求sin2θ+cos2θ的值
答
∵tanθ=1/2
∴sin2θ+cos2θ
=2sinθcosθ+2cos²θ-1
=(2sinθcosθ+2cos²θ)/(sin²θ+cos²θ)-1
=(2sinθ/cosθ+2)/(sin²θ/cos²θ+1)-1
=(2tanθ+2)/(tan²θ+1)-1
=(1+2)/(1/4+1)-1
=12/5-1
=7/5
答
注意楼上的错了
2sinθcosθ+2cos²θ
=(2sinθcosθ+2cos²θ)/(sin²θ+cos²θ)
=(2tanθ+2)/(tan²θ+1) (分子分母同时除以cos²θ而得)
=(2*1/2+2)/(1/4+1)
=3/(5/4)
=12/5
于是
sin2θ+cos2θ
=2sinθcosθ+2cos²θ-1
=2sinθcosθ+2cos²θ-1
=12/5-1
=-7/5