我们可以将大数拆成两个及两个以上连续自然数的和,例如:102=33+34+35.则2013可以有_____种不同的拆法
问题描述:
我们可以将大数拆成两个及两个以上连续自然数的和,例如:102=33+34+35.则2013可以有_____种不同的拆法
答
n(n+1)/2-m(m+1)/2=2013 (n>m+1)
n²+n-m²-m=4026
n²-m²+n-m=4026
(n+m)(n-m)+(n-m)=4026
(n-m)(n+m+1)=4026=2x3x11x61=2x2013=3x1342=6x671=11x366=22x183=33x122=61x66
2013可以有6种不同的拆法. 可拆成2项、3项、6项、11项、22项、33项,共6种拆法,现分列=1006+1007
=670+671+672
=333+334+335+336+337+338
=178+·········187+188
=81+82+83···········+102
=45+46+·········+76+77