若tan(x+y)=2tanx,求证3siny=sin(2x+y).
问题描述:
若tan(x+y)=2tanx,求证3siny=sin(2x+y).
答
令a=x+y,则条件变为
tan(x+y)=2tanx于是tana=2tanx,
2sinacosx=4cosasinx
3sinacosx-3cosasinx=sinacosx+cosasinx
3sin(a-x)=sin(a+x)
所以
3siny=sin(2x+y)