计算:12-22+32-42+52-62+…+n2-(n+1)2=________.(n属于奇数)
问题描述:
计算:12-22+32-42+52-62+…+n2-(n+1)2=________.(n属于奇数)
计算:12-22+32-42+52-62+…+n2-(n+1)2=________。(n属于奇数) 每个数字后面的2是平方的意思
答
1²-2²+3²-4²+……n²-(n-1)²=(1-2)(1+2)+(3-4)(3+4)+……+[n-(n+1)][n+(n+1)]=(-3)+(-7)+……+[-(2n+1)]=-3+[(2n+2)/4-1]×(-4)=-3+[-(2n+2)+4]=-3+(-2n+2)=-2n-1错了,n=3时,1²-2²+3²-4²=-10 -2n-1=-71²-2²+3²-4²+……n²-(n-1)²
=(1-2)(1+2)+(3-4)(3+4)+……+[n-(n+1)][n+(n+1)]
=(-3)+(-7)+……+[-(2n+1)]
=[(2n+2)/4]×(-3)+{[(2n+2)/4][(2n+2)/4-1]×(-4)}/2
=[-3(n+1)/2]-[(n+1)/2](n-1)
=[-(n+1)/2][3+(n-1)]
=[-(n+1)/2](n+2)
=-(n+1)(n+2)/2