已知双曲线C:x29−y216=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于(  )A. 24B. 36C. 48D. 96

问题描述:

已知双曲线C:

x2
9
y2
16
=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于(  )
A. 24
B. 36
C. 48
D. 96

∵双曲线C:

x2
9
y2
16
=1中a=3,b=4,c=5,
∴F1(-5,0),F2(5,0)
∵|PF2|=|F1F2|,
∴|PF1|=2a+|PF2|=6+10=16
作PF1边上的高AF2,则AF1=8,
AF2
10282
=6

∴△PF1F2的面积为
1
2
|PF1|•|AF2|=
1
2
×16×6=48

故选C.
答案解析:先根据双曲线方程求出焦点坐标,再利用双曲线的额性质求得||PF1|,作PF1边上的高AF2则可知AF1的长度,进而利用勾股定理求得AF2,则△PF1F2的面积可得.
考试点:双曲线的简单性质.

知识点:此题重点考查双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;由题意准确画出图象,利用数形结合,注意到三角形的特殊性.