证明三角形面积公式:S=√(p(p-a)(p-b)(p-c))其中p=(a+b+c)/2,分别用正弦定理余弦定理以及几何方法来证明

问题描述:

证明三角形面积公式:S=√(p(p-a)(p-b)(p-c))其中p=(a+b+c)/2,分别用正弦定理余弦定理以及几何方法来证明

这是海伦-秦九韶公式.
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1]
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
三角形面积公式
1.海伦公式:设P=(a+b+c)/2
S△=根号下P(P-a)(P-b)(P-c)
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长:p=(a+b+c)/2
2.S△ABC=(ab/2)·sinC=(bc/2)·sinA=(ac/2)·sinB=abc/(4R)[R为外接圆半径] 3.S△ABC=ah/2
其他的你自己研究研究