已知f(x)=sin(2x-π/3)-cos(2x+π/6)

问题描述:

已知f(x)=sin(2x-π/3)-cos(2x+π/6)
①将f(x)图象向右平移m个单位,得到图象过原点,求m最小值
②若x0∈【-π/12,5π/12】 f(x0)=-8/5 求f(x0+π/4)的值

答:
f(x)=sin(2x-π/3)-cos(2x+π/6)
=cos(π/3)sin2x-sin(π/3)cos2x-cos(π/6)cos2x+sin(π/6)sin2x
=sin2x-√3cos2x
=2*[(1/2)sin2x-(√3/2)cos2x]
=2sin(2x-π/3)
1)
图像向右平移m个单位得到:f(x)=2sin(2x-2m-π/3)
经过原点:f(0)=2sin(-2m-π/3)=0
所以:2m+π/3=kπ
所以:m=kπ/2-π/6>0
所以:k=1时,m的最小值为π/3
2)
f(x)=2sin(2x-π/3)=-8/5
所以:sin(2x-π/3)=-4/5
所以:sin(2x+π/6-π/2)=-sin[π/2-(2x+π/6)]=-cos(2x+π/6)=-4/5
所以:cos(2x+π/6)=4/5
因为:
-π/12-π/60所以:
0结合恒等式(cosa)^2+(sina)^2=1解得:
sin(2x+π/6)=3/5
所以:
f(x+π/4)
=2sin(2x+π/2-π/3)
=2sin(2x+π/6)
=2*(3/5)
=6/5