解下列方程: (1)x/2+x/3=1 (2)x+x−12=3 (3)1/2(2x−1)+1/3(2x−1)=5/6 (4)x-2x+3x-4x+…+99x-100x=25.
问题描述:
解下列方程:
(1)
+x 2
=1x 3
(2)x+
=3x−1 2
(3)
(2x−1)+1 2
(2x−1)=1 3
5 6
(4)x-2x+3x-4x+…+99x-100x=25.
答
(1)去分母得,3x+2x=6,
合并同类项得,5x=6,
系数化为1得,x=
;6 5
(2)去分母得,2x+(x-1)=6,
去括号得,2x+x-1=6,
移项得,2x+x=6+1,
合并同类项得,3x=7,
系数化为1得,x=
;7 3
(3)去括号得,x-
+1 2
x-2 3
=1 3
,5 6
移项得,x+
x=2 3
+5 6
+1 2
,1 3
合并同类项得,
x=5 3
,5 3
系数化为1得,x=1;
(4)原方程可化为:(x-2x)+(3x-4x)+…+(99x-100x)=25,即-50x=25,
把x的系数化为1得,x=-
.1 2