设f(x)连续,求d/dx[∫x0tf(x2-t2)dt]=_.

问题描述:

设f(x)连续,求

d
dx
[
x0
tf(x2-t2)dt]=______.

令u=x2-t2,则当t=0时,u=x2;当t=x时,u=0.且du=-2tdt

x0
tf(x2t2)dt=
1
2
0x2
f(u)du
=
1
2
x20
f(u)du

d
dx
x0
tf(x2t2)dt=xf(x2)