已知函数f(x)=a-(1/ |x| ),若f(x)
问题描述:
已知函数f(x)=a-(1/ |x| ),若f(x)
数学人气:504 ℃时间:2019-10-29 23:38:24
优质解答
f(x)a-(1/ |x| )1即
a设g(x)=2x+1/x (x>1),令x2>x1,则
g(x2)-g(x1)=2x2-1/x1+2x1-1/x2=(x2-x1)(2x1x2-1)/(x1x2)
x2>x1>1,即x2-x1>0,2x1x2-1>0
所以g(x2)-g(x1)>0
所以g(x)为增函数,所以g(x)>g(1)=3
所以a≤g(1)=3,即
a≤3
a设g(x)=2x+1/x (x>1),令x2>x1,则
g(x2)-g(x1)=2x2-1/x1+2x1-1/x2=(x2-x1)(2x1x2-1)/(x1x2)
x2>x1>1,即x2-x1>0,2x1x2-1>0
所以g(x2)-g(x1)>0
所以g(x)为增函数,所以g(x)>g(1)=3
所以a≤g(1)=3,即
a≤3
我来回答
类似推荐
答
f(x)a-(1/ |x| )1即
a设g(x)=2x+1/x (x>1),令x2>x1,则
g(x2)-g(x1)=2x2-1/x1+2x1-1/x2=(x2-x1)(2x1x2-1)/(x1x2)
x2>x1>1,即x2-x1>0,2x1x2-1>0
所以g(x2)-g(x1)>0
所以g(x)为增函数,所以g(x)>g(1)=3
所以a≤g(1)=3,即
a≤3