解分式方程1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)1/(x²+9x+20)=1/8

问题描述:

解分式方程1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)1/(x²+9x+20)=1/8
我不知道是解错了还是怎么回事,算到最后式子中含有x²项.

1/(x²+3x+2)+1/(x²+5x+6)+1/(x²+7x+12)+1/(x²+9x+20)=1/8
1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+1/(x+4)(x+5)=1/8
1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)+1/(x+4)-1/(x+5)=1/8
1/(x+1)-1/(x+5)=1/8
8(x+5)-8(x+1)=(x+1)(x+5)
8x+40-8x-8=x²+6x+5
x²+6x-27=0
(x+9)(x-3)=0
x=-9或x=3
经检验x=-9或x=3都是方程的根请问最后总结时为什么要用“或”而不用“且”?或表示两个值都是方程的解,且表示两个条件都要同时满足,对方程来讲,x不可能等于-9又等于3