在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率为_.若事件A=“在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥a成立”,且P(A)=1,则a的取值范围是_.

问题描述:

在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率为______.若事件A=“在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥a成立”,且P(A)=1,则a的取值范围是______.

在区间[-3,3]上随机取一个数x,则-3≤x≤3,
当-3≤x≤-1时,不等式等价为-(x-1)+(x-2)≥1,不成立,
当-1<x<2时,不等式等价为(x+1)+(x-2)≥1,即x≥1,此时1≤x<2,
当2≤x≤3时,不等式等价为(x+1)-(x-2)≥1,成立,此时x≥2.
综上1≤x≤3,
则在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P=

3−1
3−(−3)
=
1
3

若事件A=“在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥a成立”,且P(A)=1,则在区间[-3,3]上随机取一个数x,|x+1|-|x-2|≥a恒成立,∴a≤1.
故答案为:
1
3
,a≤1.