设A是为n阶非零矩阵且|A|=0,证明:存在n阶非零矩阵B,使AB=0(用行列式的知识)
问题描述:
设A是为n阶非零矩阵且|A|=0,证明:存在n阶非零矩阵B,使AB=0(用行列式的知识)
不用矩阵秩的知识,仅用矩阵和行列式或者方程组的知识
答
证明:
|A|=0 即AX=0 存在非零解
那么若x1为AX=0的解向量,则利用x1,构成解矩阵B 即可
B=(x1,x2,…,xn),其中x1不等于0,x2=x3=…=xn=0
而B为非零矩阵,即为所求