用配方法解下列方程:x^2-2√3x+3=0 1/3x^2-1/2x+3/16=0 x^2+(√2+1)x+√2=0 (x+2)(x-2)= 2√2x

问题描述:

用配方法解下列方程:x^2-2√3x+3=0 1/3x^2-1/2x+3/16=0 x^2+(√2+1)x+√2=0 (x+2)(x-2)= 2√2x
10月7日之前给我答案
x^2-2√3x+3=0
1/3x^2-1/2x+3/16=0
x^2+(√2+1)x+√2=0
x+2)(x-2)= 2√2x

1. (x-√3)^2=0x=√3
2. x^2-3/2x+9/16=0 得(x-3/4)^2=0 x=3/4
3. [x+(√2+1)/2]^2=[(√2-1)/2]^2
得x=-1或x=-√2
4. x^2- 2√2x-4=0
(x-√2)^2=6=(√6)^2
得x=√2±√6