已知函数f(x)=|-x2+3x-2|,试作出函数的图象,并指出它的单调增区间,求出函数在x∈[1,3]时的最大值.
问题描述:
已知函数f(x)=|-x2+3x-2|,试作出函数的图象,并指出它的单调增区间,求出函数在x∈[1,3]时的最大值.
答
如图所示:函数f(x)=|-x2+3x-2|的单调增区间为〔1,1.5〕和〔2,+∞〕;
函数在x∈[1,1.5]上单调递增,在[1.5,2]上单调递减,在[2,3]上单调递增,
f(1.5)=
,f(3)=2,故函数在区间[1,3]上的最大值为2.1 4