解析几何 急
问题描述:
解析几何 急
椭圆 双曲线 抛物线的通径长都是什么 一 过焦点的弦中 通径都是最短的吗 在做大题时能不能直接用它是最短的这个条件啊 好的话一定追加 因为是手机上的所以最多二十 我在等 在有质量的同时也要有速度哦
1 楼 你说的不对
答
1.椭圆、双曲线的通径长均为
|AB|=2b^2/a
(其中a是长轴或实轴的1/2,b是短轴或虚轴的1/2,不论椭圆或双曲线的焦点在x轴还是y轴都有这个结论)
2.抛物线的通径长为
|AB|=4p
(其中p为抛物线焦准距的1/2)
3.过焦点的弦中 通径是最短的
这个结论只对椭圆和抛物线适用,对双曲线须另外讨论
如果双曲线的离心率e>根号2,则过焦点的弦以实轴为最短,即最短的焦点弦为2a
如果双曲线的离心率e=根号2,则通径与实轴等长,它们都是最短的焦点弦
如果双曲线的离心率0a>0时,
|MN|=2ab^2(k^2+1)/[(bk)^2+a^2]
当k=0时,|MN|取最大值2a
设|AB|为通径,则椭圆中|AB|≤|MN|≤2a
如果|MN|