什么是矩阵的特征值?

问题描述:

什么是矩阵的特征值?

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值
Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵.
|mE-A|=0,求得的m值即为A的特征值.|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数.
如果n阶矩阵A的全部特征值为m1 m2 ...mn,则|A|=m1*m2*...*mn
同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]
如果n阶矩阵A满足矩阵多项式方程g(A)=0,则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得.