已知函数f(x)=3sin^2x+2根号3sinxcosx+5cos^2x(1)求函数f(x)的周期和最大值;(2)已知f(x)=5,求tanx的值.

问题描述:

已知函数f(x)=3sin^2x+2根号3sinxcosx+5cos^2x(1)求函数f(x)的周期和最大值;(2)已知f(x)=5,求tanx的值.

1、f(x)=3sin?x+2√3 sinxcosx+5cos?x
=3(1-cos2x)/2+√3sin2x+5(1+cos2x)/2
=3/2-3/2cos2x+√3sin2x+5/2+5/2cos2x
=5/2cos2x-3/2cos2x+√3sin2x+3/2+5/2
=cos2x+√3sin2x+4
=2(1/2cos2x+√3/2sin2x)+4
=2sin(2x+π/6)+4
∴T=2π/ω=π
当sin(2x+π/6)=1时最大值为:
2×1+4=6
2、由f(a)=5
即:2sin(2a+π/6)+4=5
∴2sin(2a+π/6)=1
∴sin(2a+π/6)=1/2
即2a+π/6=π/6
所以a=0
即tana=tan0=0
希望可以帮到你.