已知向量a=(根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=2*向量a*向量b-2*|向量b|^2-11,当02,在(1)中,当函数f(x)取最大值时,求|1÷√t×向量a+√t×向量b|,1/2扫码下载作业帮拍照答疑一拍即得
问题描述:
已知向量a=(根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=2*向量a*向量b-2*|向量b|^2-1
1,当02,在(1)中,当函数f(x)取最大值时,求|1÷√t×向量a+√t×向量b|,1/2
扫码下载作业帮
拍照答疑一拍即得
答
f(x)=2[√3cosxsinx+2(cosx)^2]-2[(sinx)^2+(2cosx)^2]-1
=√3sin2x-2(cosx)^2-3
=√3sin2x-cos2x-4
=2sin(2x-π/6)-4,
1.0∴-π/6sin(2x-π/6)∈[-1/2,1],
∴f(x)的值域是[-5,-2].
2.2x-π/6=π/2,x=π/3,a=(√3/2,1/2),b=(√3/2,1),
|(1/√t)a+√tb|=|((√3/2)(1/√t+√t),1/(2√t)+√t)|
=√[(3/4)(1/√t+√t)^2+1/(4t)+1+t]
=√[(3/4)(1/t+2+t)+1/(4t)+1+t]
=√(1/t+7t/4+5/2),1/2设g(t)=1/t+7t/4+5/2,则
g'(t)=-1/t^2+7/4=[(7/4)t^2-1]/t^2=(7/4)[t+√(4/7)][t-√(4/7)]/t^2,
1/2√(4/7)时g(t)↑,
∴g(t)|min=g(√(4/7)=√7+5/2,g(1/2)=2+7/8+5/2=43/8,g(2)=1/2+7/2+5/2=9/2,
g(t)|max=9/2,
∴所求最小值=√(√7+5/2),最大值=3√2/2.