如果代数式x的四次方+ax³+3x²+5x³-7x²-bx²+6x-2合并后不含x³,x²项,求(ab)b-a次方的值
问题描述:
如果代数式x的四次方+ax³+3x²+5x³-7x²-bx²+6x-2
合并后不含x³,x²项,求(ab)b-a次方的值
答
x的四次方+ax³+3x²+5x³-7x²-bx²+6x-2
=x的四次方+(a+5)x³+(-4-b)x²+6x-2
不含x³,x²项
则:
a+5=0
-4-b=0
解得:a=-5;b=-4
(ab)b-a次方=20的1次方=20