已知x=根号3+根号2,y=根号3-根号2,求x的3次方+y+(xy)的3次方的值等于多少?

问题描述:

已知x=根号3+根号2,y=根号3-根号2,求x的3次方+y+(xy)的3次方的值等于多少?

x=√3+√2
y=√3-√2
xy=(√3+√2)(√3-√2)=3-2=1
x^3+y+(xy)^3
=x^3+y+1
=(x+1)(x²-x+1)+y
=(√3+√2+1)(3+2+2√6-√3-√2+1)+√3-√2
=(√3+√2+1)(6+2√6-√3-√2)+√3-√2
=6√3+6√2+6+6√2+4√3+2√6-3-√6-√3-√6-2-√2+√3-√2
=10√3+10√2-1