设a为实数,函数f(x)=x|x-a|,讨论f(x)函数的奇偶性;
问题描述:
设a为实数,函数f(x)=x|x-a|,讨论f(x)函数的奇偶性;
2)求函数f(x)在[0,1]上的最大值.
答
1)当 a=0 时,f(x)=x*|x| ,显然函数为奇函数,
当 a ≠ 0 时,f(x)=x*|x-a| ,由于 f(a)=0 ,f(-a)=2a*|a| ,因此函数是非奇非偶函数.
2)f(x)={x^2-ax(x=a) ,
因此,当 a当 0当 2√2-2当 a>=2 时,函数最大值为 f(1)=a-1 ;
综上可得,函数在 [0,1] 上的最大值为
max={1-a(a=2) .