已知m是有理数,则|m-2|+|m-4|+|m-6|+|m-8|的最小值是_.
问题描述:
已知m是有理数,则|m-2|+|m-4|+|m-6|+|m-8|的最小值是______.
答
∵绝对值最小的数是0,
∴分别当|m-2|,|m-4|,|m-6|,|m-8|等于0时,有最小值.
∴m的值分别为2,4,6,8.
∵①当m=2时,原式=|2-2|+|2-4|+|2-6|+|2-8|=12;
②当m=4时,原式=|4-2|+|4-4|+|4-6|+|4-8|=8;
③当m=6时,原式=|6-2|+|6-4|+|6-6|+|6-8|=8;
④当m=8时,原式=|8-2|+|8-4|+|8-6|+|8-8|=12;
∴|m-2|+|m-4|+|m-6|+|m-8|的最小值是8.
故答案为:8.