如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出BD的长吗?
问题描述:
如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出BD的长吗?
答
由勾股定理得,AB=30.
由折叠的性质知,AE=AC=18,DE=CD,∠AED=∠C=90°.
∴BE=AB-AE=30-18=12,
在Rt△BDE中,由勾股定理得,
DE2+BE2=BD2
即(24-BD)2+122=BD2,
解得:BD=15cm.