若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)
问题描述:
若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)
可答案是36
答
答:(x→0)lim[sin6x+xf(x)]/x^3=0属于0-0型,可以应用洛必答法则:(x→0)lim[6cos6x+f(x)+xf'(x)]/(3x^2)=0(x→0)lim[-36sin6x+f'(x)+f'(x)+xf''(x)]/(6x)=0(x→0)lim[-216cos6x+2f''(x)+f''(x)+xf'''(x)]/6=0所以,x...