设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解
问题描述:
设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解
尽快!急用
答
证明:
显然有:Ax=0的解必然也是A'Ax=0的解.
下面证:若A'Ax=0,那么Ax=0
x是n维列向量,A'Ax是n维列向量且A'Ax=0,x'是n维行向量.
方程A'Ax=0两边左乘x'得:
x'A'Ax=0
即:(x'A')(Ax)=(Ax)'(Ax)=0……①
Ax是m维列向量,设为[a1,a2...am]'
那么①式等价于:
[a1,a2...am][a1,a2...am]'=0
即:(a1)^2+(a2)^2+...+(am)^2=0
∴a1=a2=...=am=0
∴[a1,a2...am]'=Ax=0
∴A'Ax=0的解必然是Ax=0的解
即:线性方程组Ax=0与A'Ax=0同解
结论得证!