一个什么数同时被3,5,7,9,11除,余数分别为2,4,6,8,0,这个数是多少

问题描述:

一个什么数同时被3,5,7,9,11除,余数分别为2,4,6,8,0,这个数是多少

加上1
则被3,5,7,9除,都可以整除
3,5,7,9的最小公倍数是5×7×9=315
所以这个数是315n-1
能被11整除
315n-1=11a
a=(315n-1)/11=28+(7n-1)/11
则n=8,a=229
所以
n=8-11k
a=229-315k
其中n>0
k