∫arcsinx*arccosxdx永不分积分法怎么求

问题描述:

∫arcsinx*arccosxdx永不分积分法怎么求

先化简t=arcsin(x) x=sin(t) arccos(x)=π/2 -t ∫t(π/2 -t)dsin(t)=t(π/2 -t)sin(t) -∫ sint d(t(π/2 -t))=t(π/2 -t)sin(t) -∫ (π/2-2t)sint dt=t(π/2 -t)sin(t) +∫ (π/2-2t) dcos(t)=t(π/2 -t)sin(t) +...