如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O. (1)试写出图中和BD相等的一条线段并说明你的理由; (2)求出BD和CE的夹角大小,若改变△ABC的形状

问题描述:

如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.

(1)试写出图中和BD相等的一条线段并说明你的理由;
(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.

(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,AE=AB∠EAC=∠BADAC=AD,∴△AEC≌△ABD(SAS),∴EC=BD...