设A是三阶矩阵,a1,a2,a3是列向量,且线性无关,Aa1=a1-a2+2a3,Aa2=a1+a2+3a3,Aa3=-a1+a2-3a3,求A的行列式
问题描述:
设A是三阶矩阵,a1,a2,a3是列向量,且线性无关,Aa1=a1-a2+2a3,Aa2=a1+a2+3a3,Aa3=-a1+a2-3a3,求A的行列式
答
A(a1,a2,a3)=C(a1,a2,a3)
C=
-1.2
1.1.3
-1.1.-3
|C|=-2*1=-2