如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的度数为_.

问题描述:

如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=

2
,则圆周角∠CAB的度数为______.

连接AB,∵PA、PB分别与⊙O相切于A、B两点,且∠APB=60°,∴∠PAO=∠PBO=90°,∠OPA=12∠APB=30°,∴∠AOB=360°-∠PAO-∠PBO-∠APB=120°,∵OA=OB,∴∠OAB=∠OBA=180°−∠AOB2=30°,∵OP=2,∴OA=12OP=1;∵...