f(x)=5sinxcosx-5倍根号3cosx的平方+5/2倍根号3,
问题描述:
f(x)=5sinxcosx-5倍根号3cosx的平方+5/2倍根号3,
求(1)最小正周期(2)单调区间(3)图像对称轴和对称中心
我已经化简了=5sin(2x-π/3)
尤其是不确定减区间的范围
答
1,
f(x)=5sinxcosx-5√3cos²x+5√3/2
=(5/2)sin2x-(5√3)(1+cos2x)/2+5√3/2
=5[(1/2)sin2x-(√3/2)cos2x]
=5[sin2xcos(π/3)-cos2xsin(π/3)]
=5sin(2x-π/3)
它的最小正周期T=2π/2=π;
2,
因为sinx的单调增区间为[-π/2,π/2],
由 2x-π/3∈[-π/2+2kπ,π/2+2kπ]
得 x∈[-π/12+kπ,5π/12+kπ]
得f(x)的单调增区间为 [-π/12+kπ,5π/12+kπ]
又因为sinx的单调减区间为[π/2,3π/2],
由 2x-π/3∈[π/2+2kπ,3π/2+2kπ]
得 x∈[5π/12+kπ,11π/12+kπ]
得f(x)的单调减区间为 [5π/12+kπ,11π/12+kπ] ;
3,
图像对称轴为 2x-π/3=π/2+kπ
即 x=5/12π+1/2kπ;
图像对称中心横坐标为 2x-π/3=kπ
得 x=π/6+1/2kπ
所以图像对称中心为
(π/6+1/2kπ,0).