在扇形OAB中角AOB=60度,C为弧AB(不重合)上的一个动点.若OC向量=xOA向量+yOB向量,μ=x+py(p>0)存在最大值,求p的取值范围?
问题描述:
在扇形OAB中角AOB=60度,C为弧AB(不重合)上的一个动点.若OC向量=xOA向量+yOB向量,μ=x+py(p>0)存在最大值,求p的取值范围?
答
如图,设 ∠COA=θ ,则 0°<θ<60° .设 |OA|=|OB|=|OC|=r(r>0),已知 OA*OB=1/2*r^2 ,所以 OC*OA=|OC|*|OA|*cosθ ,即 x*r^2+1/2*y*r^2=r^2*cosθ ,由此得 x+1/2*y=cosθ ,同理由 OC*OB=|OC|*|OB|*cos(...