已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x)<0的解集;(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;(3)在(2)的条件下,若对一切x>2,均有f(x)≥
问题描述:
已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;
(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
答
(1)g(x)=2x2-4x-16<0,∴(x+2)(x-4)<0,∴-2<x<4.∴不等式g(x)<0的解集为{x|-2<x<4}.…(4分)(2)∵|x2+ax+b|≤|2x2-4x-16|对x∈R恒成立,∴当x=4,x=-2时成立,∴|16+4a+b|≤0|4-2a+b|≤0,∴...